and 100 ml of water was added. An oil separated which was extracted into ether. Removal of the ether followed by distillation gave 23.9 g (80% yield) of 2-chloro-3-cyano-4-trifluoro-methyl-6-methylpyridine, bp 85° (0.05 mm).

Anal. Calcd for $C_8H_4ClF_3N_2$; C, 43.55; H, 1.82; N, 12.69, Found: C, 43.19; H, 2.12; N, 12.24.

Dehalogenation by the same procedure used for the preparation of 3-cyano-6-methylpyridine gave 3-cyano-4-trifluoromethyl-6methylpyridine in 52% yield, bp $50-52^{\circ}$ (0.02 mm).

Anal. Caled for $C_8H_3F_3N_2$; C, 51.61; H, 2.70; N, 15.04, Found: C, 51.54; H, 2.75; N, 15.06.

3-Cyano-4-methoxymethyl-6-methylpyridine.--Dehalogenation of 2-chloro-3-cyano-4-methoxymethyl-6-methylpyridine⁴⁴ by the same procedure used for the preparation of 3-cyano-6methylpyridine gave the product in 66% yield, bp $150-155^{\circ}$ 10.06-0.08 mm), mp 44-45°.

Anal. Calcd for $C_9H_0N_2O$: C, 66.65; H, 6.22; N, 17.27. Found: C, 66.29; H, 6.14; N, 17.30.

3-(5-Tetrazolyl)pyridine N-Oxide.—A solution containing 14.7 g (0.1 mole) of 5-(3-pyridyl)tetrazole, 75 ml of acetic acid, and 225 ml of 30% H_2O_2 was maintained at 90° for 24 hr. On cooling and triturating with ether there was obtained 11.1 g of erude product, mp 235° dec. Recrystallization from water gave 6.0 g (37% yield) of purified product, mp 248° dec.

5-(3-Pyridylmethyl)tetrazole Hydrochloride -A mixture of 20 g of acetic acid, 26 g (0.22 mole) of 3-pyridylacetonitrile, $^{\rm 45}$ 100 ml of n-butyl alcohol, and 22 g (0.33 mole) of NaN₈ was heated to reflux for 4 days. The mixture was cooled and an additional 5 g of NaN3 and 10 g of acetic acid was added and heating under reflux was continued for 2 additional days. After coding, 300 ml of water was added and the n-butyl alcohol was removed in vacuo. Purification was achieved by way of the copper tetrazole derivative. Addition of a solution of 21.9 g of copper acetate in 200 ml of water precipitated the copper salt. After washing with water, the salt was suspended in 400 ml of water and H₂S was bubbled in until the precipitation of CuS was complete. The clear aqueons filtrate, after removing the CuS. was concentrated to dryness in vacuo. There was obtained 15.8 g of crude 5-(3-pyridylmethyl)tetrazole. Addition of a solution of ethyl acetate saturated with dry HCl to an ethanol solution of this product gave the salt, 17.5 g (40% vield), mp 188-190° dec. An analytical sample was prepared by a recrystallization from melhanol-ethec, mp 192-193° dec.

Anal. Caled for $C_7H_8CIN_5$: C, 42.54; H, 4.08; N, 35.44; Cl, 17.94. Found: C, 42.54; H, 4.19; N, 35.42; Cl, 17.96.

1-Methyl-5-(3-pyridyl)tetrazole.—A mixture of 6.8 g (0.05 molet of N-methylnicotinamide⁶ and 10.4 g (0.05 molet) of PCl₅ in 125 ml of benzene was stirred at 25° for 6.5 hr. After this time, 30 ml of a solution of 4 N hydrazoic acid in benzene was added and stirring at 25° was continued for an additional 12 hr. After decanting the benzene from the insoluble gunt that had formed, 50 ml of a dilute aqueous NaOH solution was added, and the product was extracted (CH₂Cl₂). Removal of the methylene chloride *in vacuo* gave 6.1 g of crude product, mp 66–72°. Recrystallizations from CH₂Cl₂—ether and from toluene

44: R. P. Mariella and E. P. Belcher, J. Am. Chem. Soc., 74, 4040 (1952).
 45: Abdrich Chemical Co., Inc., Mitwackee, Wis.

gave 2.0 g (36% yield) of purified product, mp 78-80°. The analytical sample was prepared by sublimation, mp 78-80°.

2-Methyl-5-(3-pyridyl)tetrazole.—A suspension of 2.94 g (0.02 mole) of 5-(3-pyridyl)tetrazole and 1.23 ml (0.02 mole) of CH₃I in 40 ml of acetone was treated with a solution of 2.4 g (0.06 mole) of NaOH in 4 ml of water. The mixture was stirred and heated under reflux for 3 hr, filtered, diluted with 20 ml of water, and extracted with benzene. The organic layer was dried and concentrated *in variae*. Addition of 25 ml of water to the residue gave 0.97 g (30% vield) of product, mp 127-130°. The analytical sample was prepared by sublimation, mp 127.5-129°.

analytical sample was prepared by sublimation, mp 127.5-129°. Pharmacology. Inhibition of FFA Release from Isolated Adipose Tissue .-- The inhibition of norepinephripe-induced release of fatty acids was studied with epididymal adipose tissue taken from male Spragne-Dawley rats, 180-240 g, fed ad libition. The tissue was placed in freshly aerated Krebs-Ringer bicarbouate buffer, pH 7.4, and mineed with seissors into pieces weighing approximately 10 mg. Each experimental flask contained 3 ml of freshly acrated (95% O2-5% CO2) Krebs-Ringer bicarbonate buffer and 200 \pm 3 mg (mean \pm standard deviation) of adipose tissue. Bovine plasma albumin, fraction IV, 177, was used as a fatty acid acceptor in the incobation medium. Adequate norepinephrine (20-30 ng/ml) was added to the inenbation mixture to elicit a 50% of maximum fatty acid release. The compounds under test were added at appropriate concentrations. The experimental flasks were stoppered, aerated with 95% O₂-5% CO₂ for 10 min and incubated at 37° for 3 brones Dubuoff metabolic shaker. After incubation, aliquots were removed for fatty acid analysis by the method of Dole.³⁶ The effects of the indibitors were expressed in terms of the molar concentration required to produce 50% inhibition (IC_{in}).

Effect on Fasting Plasma FFA.—An intravenous dose of 10 mg/ kg of test compound was administered to two or more normal, fasted dogs. Blood samples were withdrawn for controls and at 0.5, 1 hr, and hearly through 8 hr. Plasma FFA levels were measured by the method of Dole ⁶ and are expressed as unicroequivalents of FFA per liter of plasma. A depression of plasma FFA with an intensity greater than 60% is classified as a maximal reduction ($\pm\pm$), a 30–60% depression is classified as a less that maximal reduction ($\pm\pm$), and those compounds which produce less that a 30% fall of plasma FFA or are inactive are grouped together ($\pm\pm$).

Acknowledgments.—The apparent ionization coustants were determined by Mr. Thomas J. Toolan of the Physical Measurements Laboratory. The authors are grateful for the assistance of Messrs. Faustas J. Rajeekas, Richard Adams, and Albert Hamler in the preparation and Mrs. Dixic L. Wilson and Messrs. Gerald A. Mears and Dwight P. MacDonald in the pharmacological evaluation of these compounds. We also would like to acknowledge the many helpful discussions with Drs. J. M. McManus, F. A. Hochstein, and E. R. Pinson, Jr.

(46) V. P. Duie, J. Clin. Incest., **35**, 150 (1958).

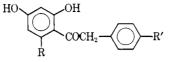
The Antifertility Activity of Isoflavones Related to Genistein

G. W. MOERSCH, D. F. MORROW, AND W. A. NEUKLIS

Parke, Davis and Company, Research Laboratocies, Ann Arbor. Michigan

Received September 19, 1966

A group of 35 isoflavones has been synthesized by known procedures. They were tested for antifertility effects in a mouse litter prevention assay and as hypocholesteremic agents in normal rats.

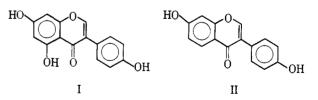

Although estrogens alone are effective antifertility agents,¹ they are employed either in combination with a progestin or sequentially, *i.e.*, followed by a progestin. The chronic administration of small doses of estrogen

 N. S. Watnick, J. Gibson, M. Vinegra, and S. Tolksdorf, Proc. Sur. Expl. Biol. Med., 116, 343 (1964). delays bleeding until 7–10 days following cessation of therapy, while chronic administration of larger doses of estrogen leads to irregular bleeding or spotting due to endometrial hyperplasia.² It has recently been re-

(2) H. W. Rudel and F. A. Kinel, Acto Endocrinol. Suppl., 105 1966.

TABLE I

DEOXYBENZOINS


R H H	к' H OCH ₃	Mp, °C ^a 114-115	λ _{max} . ^b mμ 316 280 232	ϵ 8,6 14,4		$\frac{1}{A^{\sigma}}$ Activity $-/10$	B^{d} 0/25	Ref c
			280	14, 4		- /10	0/25	с
I	OCH3	101 5 100 5			0.0			
II	OCH₃	161 5 169 5	232		00			
lI	OCH_3	101 5 100 5		9, 1	00			
		161.5 - 162.5	317	9,0	00	-/10	0/25	f
			278	15,70	00			
			217	23, 50	00			
			213	23, 8	00			
H	NO_2	295 - 297	280	23,0	00	-/10	0/25	y
H	Cl	159.5 - 160	290	20, 80	00	-/10	0/50	h
			225	16,600				
HC	Н	164 - 165				-/10	0/25	h
ЭH	OH	269 - 270	287	21,300		-/10	0/25	i
			225	22, 80	00			
ЭH	OCH_3	198 - 199	288	19,9	00	-/10	0/25	e, i
			225	23,0	00			
HC	NO_2	249 - 250	291	28,900		- /10	0/50	j
HC	Cl	224 - 225	290	21, 20	00	-/10	0/25	h
			223	23,0	00			
			220	22,70	00			
OH	\mathbf{F}	199 - 200	290	19,6	00	- /10	0/25	
			225	15, 30	00			
H	F	149 - 150	317	8,6	00	-/10	0/25	
			279	14, 30	00			
			232	8,6	00			
CH_3	OCH_3	109 - 110	277	8,3	00	-/10	0/25	
			223	20, 40	00			
				-Caled, %			Found. %	
Crystn s	olvent	Formula	С	Н	х	С	Н	х
Ag met	hanol	$C_{14}H_{11}FO_4$	64.12	4.23	7.24	64.07	4.38	7.01
-			68.29	4.51	7.71	68.25	4.67	7.41
			70.57	5.92		70.66	6.07	
	H DH DH DH DH DH H H CH ₃ Crystn s Aq met Ether-h Chlorofe	H Cl DH H DH OH DH OH DH CH ₃ DH NO ₂ DH Cl DH F H F CH ₃ OCH ₃ Crystn solvent Aq methanol Ether-hexane Chloroform	H Cl $159.5-160$ DH H $164-165$ DH OH $269-270$ DH OCH ₃ $198-199$ DH NO ₂ $249-250$ DH Cl $224-225$ DH F $199-200$ H F $149-150$ CH ₃ OCH ₃ $109-110$ Crystn solvent Formula Aq methanol $C_{14H_{11}FO_4}$ Ether-hexane $C_{16H_{16}O_4}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

^a Capillary tube, uncorrected. ^b In methanol. ^c Result in litter prevention in mice/dose (in milligrams per kilogram). ^d Percent lowering of serum cholesterol/dose (in milligrams per kilogram). ^e G. G. Badcock, G. W. R. Cavill, A. Robertson, and W. B. Whalley, J. Chem. Soc., 2961 (1950). ^f W. Baker and F. M. Eastwood, *ibid.*, 2897 (1929). ^g P. C. Joshi and K. Venkataraman, *ibid.*, 513 (1934). ^a E. Chapman and H. Stephen, *ibid.*, 404 (1923). ⁱ W. Baker and R. Robinson, *ibid.*, 2713 (1926). ⁱ M. Yamashita, Sci. Rept. Tokohu Imp. Univ., First Ser., **18**, 615 (1929); Chem. Abstr., **24**, 2443 (1930).

ported that ethinyl estradiol, a potent estrogen, is an effective postcoital agent, preventing normal blastocyst formation in rabbits by oral dosage 1-3 days following insemination.³

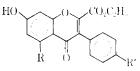
Such considerations have emphasized the examination of estrogen structures which might differentiate in some degree between gonadotrophin inhibition and endometrial hyperplasia, and which might also diminish some of the other biological properties of the known estrogens.

Warburton⁴ has recounted the story of the 1941 outbreak of infertility in sheep in Western Australia. The responsible agent has since been identified as the predominant pasture, a subterranean clover containing large amounts of the isoflavones, genistein (I) and formononetin (II), in its leaves. Bradbury and White,⁵ who isolated the isoflavones from fresh clover, found them to be very weakly estrogenic and suggested that

the isoflavones might be "proestrogens" to the much more potent isoflav-3-enes. This proposal has since been tested by Batterham, *et al.*,⁶ in sheep rumen liquor incubations of biochanin A and of formononetin. No evidence of conversion to the isoflav-3-ene was found. It thus appeared possible that the antifertility effect of the isoflavones might be a property of the isoflavone structure, rather than dependent upon the low order of estrogenicity.⁷

(6) T. J. Batterham, N. K. Hart, J. A. Lamberton, Nature, 206, 509 (1965).

⁽³⁾ M. C. Chang and M. J. K. Harper, Endocrinology, 78, 860 (1966).


⁽⁴⁾ W. K. Warburton, Quart. Rev. (London), 8, 83 (1954).

⁽⁵⁾ R. B. Bradbury and D. J. White, J. Chem. Soc., 3447 (1951).

⁽⁷⁾ Recently, and since this work was completed, Y. Folman and G. S. Pope [J. Endocrinol., 34, 215 (1966)] have reported that the weak estrogens, such as cournestrol and genistein, exhibit an antiestrogenic effect against the potent estrogens, estradiol, and diethylstilbestrol, in terms of uterine and vaginal growth in immature mice.

Тавье П

2-C MBETHOXYISOFLAVONES

					λ_{max}^{-b}		-Art	ivay	
Comp4	R	\mathbf{R}^{*}	$Mp_{1} \cap C^{n}$	•	щ.		V^{c}	11^{d}	1100
$^{\mathrm{Ib}}$	Η	Н	213 - 215		308	11,000	- /10	0/25	
					237	24, 660			
\mathbf{IIb}	Η	OCH_{\sharp}	213.5 - 214	4.5	311	10,800	$\pm /10$	0/50	e
					240	24,800			
\mathbf{THb}	11	NO_{2}	213 215		308	14,000	/10	(1/25)	4
					279	18,000			
					243	18,300			
\mathbf{IVb}	11	C1	211/212		311	10,800	-/10	11/25	
					239	26,400			
Vb	OH	11	233.5-23	4.5	312	6,400	· / {{1	11/25	<i>i</i> .
					268	19,700			
VHb	OH	OCH_{a}	$191 \cdot 191$.	5)	307	8,200	740	11/25	,
					267	24,200			
VIIIb	OH	$\rm NO_2$	191 - 192		279	23,400	- /Hi	1/25	
IXb	OH	Cl	195 - 197		308	7,250	± 740	0/25	
					270	22,000	-/5		
Xb	OH	\mathcal{V}	204 - 206		313	10, 800	···· 71(1	11/25	
					268	191,940(1			
XIb	11	F	209-211		310	5, (101)	····· y {11	11/25	
					238	(3, 200)			
					Cated, 17			Forcad, 4,	
Compd	Crystic solveor		Formata	C	((X	e *	1(X
IVb	Ethanol		$C_{18}H_{13}ClO_{4}$	62.71	3,80	10.29	62.64	4.03	10.52
$1 \mathrm{Xb}$	Abs ethabol		$C_{18}H_{ca}ClO_6$	59.42	3.63	91,83	60.04	3.74	9.72
$\mathbf{X}\mathbf{b}$	Abs ethanol		$\mathrm{C}_{18}\mathrm{H}_{13}\mathrm{FO}_6$	62.79	4 10	5.52	62.61	3 11	5,50
XIb	Ethanol		$C_{48}H_{13}FO_5$	65.85	3,49	5.79	65,93	4 (191	5 53

""^d See corresponding footnote in Table I. " See ref 14.

A group of isoflavones was prepared by generally well-known procedures and tested in a litter-prevention assay in mice.⁸ The compounds were administered orally daily and were considered active only if no pregnancies ensued following mating. The test results are presented in the tables (A) as + or -/dose. A test for the lowering of serum cholesterol⁹ by oral dosage in normal male rats was also employed. The test results are expressed (B) as % lowering/dose. Only low orders of activity were found for any of the compounds.

The ultraviolet spectra of *trans*-stilbenes show a hypsochromic shift and decreased absorption for the long-wavelength band accompanying substitution at the α, α' positions, and this has been suggested as relating to estrogenic activity and to a twisting of the two aryl systems from the coplanar resonating structure.^{10,11} A similar effect has been noted for 4-substituted isoflavenes,¹² and Lawson¹³ has found high estrogenicity for 2,4-dialkyl-substituted isoflavenes.

- (11) R. E. Juday, D. P. Page, and G. A. DaVail, J. Med. Chem., 7, 519 (1964).
- (12) R. W. Bradbury and D. E. White, J. Chem. Soc., 871 (1953).

(13): W. Lawson, *ibid.*, 4448 (1954).

While Bradbury and White¹² have shown that 2-alkyl substitution reduces estrogenic activity of the isoflavones, it was found here that no significant shift in the ultraviolet absorption could be assigned to alkyl substitution in position 2. In the absence of the 5hydroxyl (compare He and XIV), the band shifts were slight with little diminution in absorption. Introduction of a hydroxyl group at position 5 produced a significant loss in absorption for the longer wavelength band, but this would more probably be an effect on the contribution of the 2,4-dihydroxyacetophenone system rather than an effect on the coplanarity of the 3-aryl system. Thus, sterie inhibition of resonance by 2-alkyl substitution in the isoflavones is not readily identifiable in the ultraviolet spectra.

Experimental Section

Preparation of Benzyl Ketones.—The general procedure of treating the substituted resorcinol with an appropriately substituted phenylacetonitrile in ether in the presence of ZuCl₂ and anhydrous HCl was used (see Table I for references).

⁽⁸⁾ H. A. DeWald, O. D. Bird, G. Rodney, D. H. Kaump, and M. L. Black, *Nature*, **211**, 538 (1966).

⁽⁹⁾ G. Rodney, M. L. Black, and O. 11. Birl, Biochem. Pharmacol., 14, 445 (1965).

⁽¹⁰⁾ W. H. Laarbover, R. J. F. Nivard, and E. Havenga, Rev. True. Chim., $\mathbf{79},$ 1453 (1960).

²⁻Carbethoxyisoflavones. The procedure of Baker, *et al.*,⁴⁴ was employed.

Preparation of Isoffavones.--The 2-carbethoxyisoffavones were hydrolyzed and decarboxylated as previously described.⁽⁴⁾ The 2-carboxyisoffavones were not parified but were decarboxylated directly.

⁽¹⁴⁾ W. Baker, J. Chadderson, J. B. Radsorne, and W. D. Ollis, *imd.*, 1852 (1953).

157

TABLE III

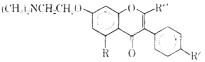
ISOFLAVONES

HO	~0~	_R''
\bigcirc		
Ť	Д	IOI
R	0	$\sim R$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						λ_{\max} , b	Λe			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Compd	\mathbf{R}	R'	R‴	$Mp_* \circ C^a$	mµ	e			\mathbf{Ref}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ic	н	Η	Н	213 - 215			-/10	0/25	e
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IIc	Н	OCH_3	Н	257 - 258	301	11,100	- /10	0/25	e
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IIIc	H	\mathbf{NO}_{2}	Н	292 - 293		,	$\pm /10$	15/25	e
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_						
Vc OH H H 199-200 306 $5,300$ $-/10$ $12/25$ c VIIc OH OCH ₃ II $211.5-213$ 327 $3,520$ $-/10$ 0.25 c VIIc OH OCH ₃ II $211.5-213$ 327 $3,520$ $-/10$ 0.25 c 261 $35,300$ $-/10$ 0.25 c	I Ve	11	Cl	II	261.5 - 262			-/10	0/25	f
VIIc OII OCII ₃ II $211.5-213$ 327 $3,520$ $-/10$ 0.25 c 261 $35,300$	N.	OT I	11	TT	100 900			/10	19/95	6
VIIc OII OCII ₃ II 211.5-213 327 $3,520 - /10 0.25 c$ 261 35,300	ve	011	11	11	199-200			-/10	12/20	C
261 35,300	VHe	он	OCH_3	II	211.5 - 213			-/10	0.25	с
VIII. OH NO. II $300-300.5$ $319a$ $-/10$ e			0					, - ···		
	VIIIc	OH	${ m NO}_2$	II	300 - 300.5	319^{g}		-/10		e
290 $21,400$										
243 18,700		0.77	CI.		222 205		18,700	11.0	0.07	
IXc OH Cl H $236-237$ 319^{g} $-/10$ 0.25	IXe	ОН	CI	H	236-237		22 600	-/10	0.25	
261 33,600 Xc OH F H $224-225 -/10 0.25$	N 4	ЮН	F	н	994_995	201	33,000	/10	0.25	
XC OH F H $224-225$ $-/10$ 0.25 XIc H F H $249-250.5$ 300 $11,000$ $-/10$ $0/25$						300	11 000			
	2010		1		210 200,0			/10	0/20	
XIII H OCH ₃ CH ₃ 286–287 297 13,000 $-/10$ 12/25 h	XIII	Н	OCH_3	CH_3	286 - 287			-/10	12/25	h
248 $27,900$										
241 $28,500$						241	28,500			
XIV H OCH ₃ CH ₂ CH ₃ 242–243.5 297 13,300 $-/10$ 13/25	XIV	II	OCH_3	$\rm CH_2 CH_3$	242 – 243.5			-/10		
248 27,300 15/50									15/50	
241 28,300										
XV H OCH ₂ $268-269$ 310 $16,000$ $-/10$ $14/25$	VV	TI	OCH		000 000		,	/10	14/95	
XV H OCH ₃ \bigcirc 268-269 310 16,000 -/10 14/25 237 29,000 15 50	AV	rı	00113	$\langle \bigcirc \rangle$	208-209			/ 10		
$\frac{257}{320} = \frac{25}{5,750} = \frac{10}{-10} = \frac{50}{0/25} = h$								- /10		h
XVI OH OH CH_2CH_3 245-246 288 8,750	XVI	ОН	OH	CII ₂ CH ₃	245 - 246			/10	07=0	
257 31,600				2 - 0						
320 4,200 $-/10$ 0/25 h						320		-/10	0/25	h
XVII OII OCH ₃ CH_2CH_3 229–230 290 6,000	XVII	OH	OCH_3	CH_2CH_3	229 - 230					
257 $32,000$										
293 12,900 -/10 0/25	3711377	ar	0.011	OIL OIL	200.000			-/10	0/25	
XVIII CH ₃ OCH ₃ CH ₂ CH ₃ 238–239 250 28,900 242 29,300	XVIII	CH ₃	OCH3	CH_2CH_3	238-239		,			
,										
Compd Crystn solvent Formula C H X C H X	Compd	Cryst	n solvent	Formula	C C	Caled, %- H	x	C		x
	\mathbf{IXc}	Ethyl a	cetate	$\mathrm{C_{15}H_{9}ClO_{4}}$	62.40				3.01	12.25
	Xc	\mathbf{E} ther			66.17					6.92
							7.41			7.16
XIV Methanol $C_{18}H_{16}O_4$ 72.96 5.44 73.08 5.47										
XV Acetone-methanol $C_{22}H_{16}O_4$ 76.73 4.68 76.81 4.75 XVIII Fibul contate C H O 72.52 5.84 72.28 5.08										
XVIII Ethyl acetate $C_{19}H_{18}O_4$ 73.52 5.84 73.38 5.98		e								

^{a-d} See corresponding footnote in Table I. ^e See ref 14. ^f L. Farkas, A. Major, L. Pallos, and J. Varady, Chem. Ber., **91,** 2858 (1958). ^g Inflection. ^h See ref 12.

Preparation of 7-Dimethylaminoethoxyisoffavones.—The 7hydroxyisoffavone (1 mole) in absolute ethanol was treated with 2.2 moles of KOH in water and then with 1.1 moles of dimethylaminoethyl chloride hydrochloride. The reaction mixture was refluxed and stirred for 1-2 hr, cooled, and diluted with water. The precipitate was separated by filtration and washed with water. Unreacted starting material could be recovered by acidification of the filtrate.


In other preparations, NaH was used in diglyme solution. After the reflux period, the reaction mixture was poured into water to precipitate the product. Data on the novel members of each of these groups of compounds are presented in Tables I-IV (Table IV may be found on the following page).

Acknowledgment....The authors wish to express their appreciation to Dr. L. M. Long for encouragement in this investigation and to D18, O. D. Bird and G. Rodney for the assay results. We thank Dr. J. M. Vandenbelt and co-workers for the physical data and Mr. C. E. Childs and staff for the microanalyses.

Vol. 10

TABLE IV

Dialkylaminoalkoxylsoflavones

									veov	
Compil	1}	R'	R''	M_{10} (C)		$\lambda_{\mu_{FFX}}^{6}$ (6) μ	(N.	197
XIX^e	11	OCH_3	11	1447		208	11,500		- / H1	(1/25)
						259	28,800			
						249	28,200			
XX	11	OCH_{3}	CH_{4}	125-127		294	13,300		F/Hu	0/25
						248	29,200		- /5	
3/ 1/ 1						242	28,900			
XXI	11	OCH_3	$C_2 H_5$	97-100	L	294	14,000		E710	11/25
						248	29,300			
						241	29,800			
XXII	11	$OC11_3$	C_8H_6	156 - 158		308	16,500		~ /Ht	(1/25)
					_	236	30,000		,	
XXIII	11	11	11	162 - 164		297	12,000		- /10	(1/25
3132137						248	29,500			
XX1V	11	F	11	165-167		298	11,200		- /Iu	0/25
X1 X1 X1		(1)				248	27,300			
XXV	11	Cl	11	(63-164					111	
XXVI	OH	OCH_{3}	$C_2 H_5$	95~97		319	5,5(11)		~ / (11	11/25
						285				
X: X: X: 1 1	(11)		() 11			258	35,000			
XXVH	CH_4	OCH_{5}	$C_{2}\Pi_{2}$	114-115		283	13,000		/ m	11/25
						277	13,000			
						250 243	30, 500			
	<i></i>				• • •		30, 500			
Compd	C r ystn solvent	Formala	С	Cale 	al de la composition de la composition Notas de la composition de la compositio Notas de la composition de la compositio	X	··· · · · ·	Енно 14	al bi s N	N
XIX	Acetone	$C_{20}H_{21}NO_4$	70.78	6.24	4.13		70,78	6.27	4.27	
XX	Acetone	$C_{21}H_{23}NO_4$	70.43	6.56	3.97		71,46	6.53	3,87	
XXI	Ether	$C_{22}H_{25}NO_4$	71.90	6.86	3.82		71.92	0.00 0.63	3.64	
XXII	Ether	$C_{25}H_{25}NO_4$ $C_{26}H_{25}NO_4$	75.15	6.06	3.37		74.96	5,98	3.20	
XXIII	Acetone	$C_{19}H_{19}NO_3$	73.76	6.20	4.53		73 61	6.21	4.42	
XXIV	Acetone	$C_{19}H_{18}FNO_3$	69.70	5, 54	4.28	5,80	69.78	5,59	4.32	5,916
XXV	Acetone	$C_{19}H_{18}CINO_9$	66.37	5.27	4.07	10.32	66.69	5,45	4.08	10.50
XXVI	Ether	$C_{22}H_{25}NO_5$	68.91	6.57	3.65		68.78	6.58	3.72	
XXVII	Eiher	$C_{22}H_{23}NO_4$ $C_{23}H_{27}NO_4$	72.41	7.13	3.67		72.29	7.08	3.73	
		$a \text{ in Table I} = e^{T}$								

 $^{a\cap d}$ See corresponding footnote in Table I. \leq This compound is described by Sipher, S. A., Belgian Patera 656541 (1965) (Decwerd No. 20622) and is said to have antilipenic properties. \neq Inflection.

Cholesterol-Solubilizing Agents Related to the Gallstone Problem

C. Ainsworth, D. N. Benslay, J. Davenport, J. L. Hudson, D. Kau, T. M. Lin, and R. R. Pfeiffer

The Lilly Research Laboratories, Indianapolis, Indiana

Received June 30, 1966

Homologous series of three different types of higher alkyl substituted carboxylic acids were prepared and evaluated *in vitro* as cholesterol-solubilizing agents. The solubilization capability of the test compounds was found to increase with chain length, but this was accompanied by a decrease in solubility of the compound perse. Compounds of C₁₄₋₁₆ side-chain length showed the greatest solubilization capability. Following oral aduniustration, several quaternary nicotinic acids (Table I) which showed good *in vitro* cholesterol-solubilizing properties were excreted by way of the bile in the rat but not in the dog.

Pathologic cholesterol gallstones are known only in the human species except those produced by severe regulation of the diet of experimental animals.¹ The restriction of this affliction to man is accompanied by the observation that other species produce bile far below cholesterol saturation.² Indeed, isolated human

(1) (I. Dam and F. Christensen, Acta Pathol. Microbial. Scand., 30, 236 (1952).

(2) C. G. Johnston and F. Nakayanoa, Arch. Surg., 75, 436 (1957).

gallstones are readily dissolved when placed either in the gallbladder of an animal or bathed in the bile of animals³ but are generally quite resistant to dissolution in nonlithogenic human bile.⁴ The cholesterol

(3) F. Nakayama and C. G. Johnston, Proc. Soc. Expit. Biol. Mod., 104, 73 (1960), and references therein.

(4) A few reports of spontaneous disappearance of gallstones in humans, presumably by dissolution, have been recorded: J. F. Linsmar and E. Cordoy, J. Ann. Mod. Assoc., **171**, 1098 (1059).